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Abstract

Physical aging at elevated temperature of the advanced composite IM7/K3B

was investigated through the use of creep compliance tests. Testing consisted

of short term isothermal, creep/recovery with the creep segments performed at

constant load. The matrix dominated transverse tensile and in-plane shear

behavior were measured at temperatui'es ranging from 200 to 230oc. Through

the use of time based shifting procedures, the aging shift factors, shift rates

and momentary master curve parameters were found at each temperature.

These material parameters were used as input to a predictive methodology,

which was based upon effective time theory and linear viscoelasticity combined

with classical lamination theory. Long term creep compliance test data was
compared to predictions to verify the method. The model was then used to

predict the long term creep behavior for several general laminates.
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Introduction

Strength, stiffness and weight considerations make polymer matrix

composites (PMC's) desirable for structural materials in such diverse
applications as aircraft, civil infrastructure and biomedical implants. One

common aspect shared by structural designers and material developers for all

these PMC applications is the concern for long term durability. When
considering durability, adverse environmental conditions, high loads, elevated

temperature and fatigue may all play a role in determining the useful lifetime of

a PMC structure. To address these problems, accurate analytical predictive

methods and comprehensive material property characterization techniques are
essential.

One material behavior which is ubiquitous to all polymeric materials is
physical aging. This type of aging is a thermoreversible process which occurs

due to the evolution of the free volume in a polymer toward thermodynamic

equilibrium after cooling below the glass transition temperature (TIz). This
evolutionary process may be affected by many parameters includiffg

temperature, moisture and stress. Struik{ 1) showed that it was possible to

isolate the physical aging process in polymers from other behaviors by

performing isothermal creep compliance tests and using superposition

techniques to establish the aging related material constants. Linear

viscoelasticity was used to characterize the creep and the "effective time" theory

was developed to aid in predicting the long term creep compliance from short
term test data.

It is the intent of this paper to utilize the test techniques and analysis tools

given by Struik(1), and adapt them to the elevated temperature
characterization of physical aging in an advanced graphite/thermoplastic PMC.

For the purposes of this research, short term was defined as tests spanning

approximately 3 decades of time whereas long term was defined as tests
spanning approximately 5 decades. Material property testing consisted of short

term, isothermal, creep/recovery with the creep segments performed at

constant load. Both transverse tensile and in-plane shear behavior were
measured. Through the use of time based shifting procedures, the aging shift

factors, shift rates and momentary master curve parameters were found at

each temperature.

These material parameters were used as input to a predictive methodology

given by Brinson and Gates(2) which was based upon effective time theory and
linear viscoelasticity combined with classical lamination theory. Long term

creep compliance test data were compared to predictions to verify the method.
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The model was then used to predict the long term behavior for several general
laminates.

Traditionally, time/temperature superposition (TTSP] provides a method by
which long term behavior can be predicted from short term tests, thereby
providing an accelerated test scheme. As described by Griffith et.al(3), TTSP
has a long history of use in viscoelastic characterization of materials and a
number of procedures have been proposed to arrive at the TTSP master curve.
However, for long term creep, Struik's(1) work with polymers and more recently
tests on PMC's by Sullivan et.al(4) have shown that TTSP by itself is not
sufficient to account for the long term effects of physical aging. This has led to
the development of the effective time theory as a way of predicting the effects of
physical aging.

Material System

The PMC material used in this study was a continuous carbon fiber

reinforced, amorphous thermoplastic polyimide. The material was fabricated by

DuPont and designated IM7/K3B. The as received Tg was 240oc as measured
by Dynamic Mechanical Analyzer (DMA) G" peak. CHemical aging of the K3B

polymer was not expected to occur. For this study, it was therefore assumed

that the Tgof IM7/K3B would remain constant over the duration of the
material characterization tests used in the current study.

All methods verification and material property tests utilized a rectangular

specimen of approximately 241mm x 25mm with a 12 or 8 ply thickness. Per

ply thickness was approximately .0135cm. The transverse and shear creep

compliance data came from [90] 12 and [+45]2 s specimen layups respectively.

Three to four replicates were used at each test temperature. Although all the

specimens came from the same material lot, many of the replicate specimens

were cut from different panels.

Test Procedures

Testing was performed to understand material behavior, develop material

constants for the analytical model and to provide verification of the predictive

model. This section will highlight some of the important test procedures.

Specific procedures and techniques relating to testing may also be found in

Feldman and Gates(3}.

Short Term Testing

The test temperatures selected for the study were 200 o, 208 o, 215 o, 225 o,

and 230oc. These temperatures were selected to ensure that measurable aging
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occurred within the test period. Prior to testing, the specimen was heated to
250oc (10° above Tg] for 20 minutes. By rapidly quenching the specimen from
above Tg to the test temperature, it was ensured that all test specimens started
the test sequence in the same unaged condition. This procedure was based
upon work by Struik(1) and others who showed physical aging is
thermoreversible and the excursion above Tg prior to quenching effectively
rejuvenates the material.

A well documented(I] technique to explore physical aging is a series of
sequenced creep (constant load] and recovery tests as shown in figure 1. The
basic procedure is that while the specimen isothermally ages, periodic creep
tests are performed using a constant applied load. For this study, the duration
of each creep test was 1/10th the duration of the prior total aging time. These
creep tests are termed momentary tests. The aging times {time after quench]
selected for starting each creep segment were 2, 4, 10, 24, 48, 72 and 96

hours. Figure 2 shows creep compliance data from a typical sequenced test.

The curves in figure 2 have a similar shape on the double log plot and are

shifted horizontally relative to the initial {2 hour] curve. This shift is an

indication that physical aging affects creep compliance. The effects of

sequencing on the test results were examined by Gates and Feldman(4) where
it was determined that the sequencing procedure had little or no effect on the
data.

All creep tests were performed in convection ovens. Thermocouples

monitoring the test temperature and providing feedback for the oven controller

were placed near the test section. Load was applied through a dead-weight

cantilever arm arrangement. Strain in the gage section was measured with high

temperature foil strain gages applied back to back at the center of the

specimen.

Between the creep segments of the sequenced test, creep recovery took place.

To facilitate recovery, the specimen remained in the oven at temperature while

being completely unloaded. Strain data were taken during both the creep and
recovery segments. Residual strain due to lack of complete recovery was

accounted for by fitting the final part of the recovery curve with a linear

function and subtracting the extrapolated recovery strain from the subsequent

creep strain. Figure 1 illustrates this extrapolated recovery strain. Strain

variations during the course of the test due to thermal apparent strain were

accounted for through the use of the thermal apparent strain correction

technique(S].

Linearit¥

The stress levels for the creep tests were chosen based on linearity checks at

the highest test temperature for a given layup. For linear viscoelastic behavior,

it was assumed that superposition and proportionality conditions would be
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met. Given an initial state of stress a' applied for a time t and an additional

stress ¢_" applied at a time tl, Boltzman's superposition principle(6) states that:

+ - t,)]= + - t,)] (1)

Therefore, equation 1 implies that given creep data, superposition would allow

the exact prediction of the subsequent recovery period so that

e(t °) = cr {S(t) - S(t - tl) } (2)

where 6 is the constant stress, t I is the time of load removal, t* is the time

during strain recovery and S(t} is the creep compliance function. Creep and

creep/recovery data provided data for checking superposition.

Proportionality states that for an applied stress G, the strain in a material at

any other stress state is found using:

e[c(y(t)]=ce[ty(t)] where c=constmt (3)

Proportionality was checked by plotting isothermal, creep compliance versus

test time for a specimen that was repeatedly rejuvenated, quenched and loaded
at various stress levels. The supposed transition from linear to nonlinear

behavior would be evident by the vertical separation of the compliance curves

with increasing stress. These checks for proportionality were made at the

lowest and highest test temperatures thereby ensuring that the effects of

applied stress were minimized for all temperatures and a linear assumption

could be used in the model with assurance of reasonable accuracy.

Long Term Testing

For a time scale measured in log seconds, the short term test data required

by the analytical model spanned approximately 2.5 to 3 decades. To verify the

analytical predictions of long term creep compliance, long term tests were run

with data taken over approximately 5 decades of time. Test procedures prior to
initial loading were the same as those used in the short term tests. The initial

unloaded aging time was 2 hours. Afterload application, the specimen

remained loaded at a constant load for the entire duration of the test period.
Therefore, aging proceeded for approximately the same time as the total loaded

test time. It was expected that the effects of aging on the creep compliance

would become apparent after the total aging time exceed the time span used in
the momentary tests.
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Analytical Model

An analytical model was developed(2) to predict the long term creep

compliance given the short term data as input. Defining "long term" as any

time greater than the time scale of the material property tests, it was expected

that the model would provide insights into the effects of physical aging on the

long term viscoelastic behavior of advanced polymeric composites.

Linear Viscoelastic Creep Compliance

The ability to satisfy Boltzman superposition and proportionality

requirements were the conditions necessary for linear viscoelastic behavior. In

general, the time dependent linear creep compliance was modeled with a three

parameter expression given by

S(t) = S ° e <'/_)_ (41

where S o, x, and 13are the initial compliance, retardation time and shape

parameter respectively.

Time Based SuDerposition

Time/aging-time superposition of the short term creep compliance test data

provided the means for the data to be collapsed into a single momentary

master curve (MMC) at each test temperature. As demonstrated by Struik(1}

and illustrated in figure 2, horizontal separation of the sequenced creep

compliance curves is due to aging and can be characterized by the aging shift

factor (-log a). This shift factor is simply defined as the horizontal distance

required to shift a compliance curve to coincide with a reference compliance

curve. A linear fit of all the shift factors versus the logarithmic aging time (log

te) for each MMC, gave the aging shift rate

d lo_, a
= (5)

dlog t,

The reference compliance curve could be any of the sequenced curves, but

for convenience of data manipulation, the longest (96 hour) compliance curve

was selected as the reference during formation of the MMC. However, to

facilitate data reporting, all MMC parameters were referenced to the shortest (2

hour} compliance curve. For a horizontal (time) translation of a compliance

curve, only the retardation time pdrameter needs to be recalculated. Given the

aging shift rate and reference curve parameters, the translation from one aging

time to another was accomplished through the use of
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(6)

where te_ is the reference aging time as given in Brinson and Gates(2).

Equation 5 implies a linear relation between log a and log te. Figure 3 shows

this relationship for one of the replicate tests used to establish the MMC's. The

shift factors for the data on figure 3 were found from the curves on figure 2 and

are representative of all the IM7/K3B MMC data.

To facilitate the collapse of the shifted data for the MMC, vertical
(compliance] shifts were also utilized. These shifts were small in comparison to

the magnitude of the horizontal (time] shifts. This use of small vertical shifts in

reduction of PMC creep compliance/aging data was also reported by Sullivan

et.al(7) and Hastie et.al(8). A recent report by the authors(3) determined that
combined horizontal and vertical shifts had little effect on the resulting shift

rates when compared to the shift rate found through horizontal shifting only.

Composite Physical Agin_

To provide the analytical model necessary to make long term creep
compliance predictions for PMC's, Brinson and Gates (2) developed a time

dependent form of laminated plate theory which incorporated Struik's(1]

effective time theory. For a single lamina under plane stress conditions, the

stress-strain relations for any fiber orientation are given in Jones(9) by

e_ = IS

7_

(7)

where eij and ¢_ij represent the strain and stress in the body axis directions and
[S] is the transformed compliance matrix given by

where [T] is the transformation matrix and [S] is the compliance matrix

referenced to the material coordinate axis given by

IS,, S,2 J
$22

0 $66

(9)
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As demonstrated by Sullivan et.al(6) and Hastie et.al (7), the only time

dependent compliance terms in equation 9 are the transverse ($22) and shear

($66}. Therefore, using equation 4, the two time dependent terms are given as

0
$22 (t) = f(Szv ]3-a, "¢z_(t, _,f ), #z_; t) (10)

0
Sa6 (t) =f($66, fl_, "¢66(t,,,f ), ]_66; t) (11)

where terefiS the reference aging time.

For the laminated composite plate, the laminate compliance referenced to

the body axis are Sx, Sy, and Sxy which are found by using the lamina
compliance terms given above arid the normal laminated plate theory as given

by Jones(9). Due to the time dependence of equations 10 and 11, the laminate

compliance will also be time dependent. The amount of time dependence and

the effects of aging will depend on the layup and therefore the relative

contributions of equations 10 and 11 to the total laminate compliance.

Long T.erm Compliance

For test periods which exceed the time required to collect the short term

(momentary) data, the response can be expected to be influenced by the

ongoing aging process. Struik(1) proposed an effective time which could be

used to replace the time such that the compliance in equation 4 would be
written as

S(t) = S_'e (_'(':))p ( 1 2)

where _. is the effective time and is calculated according to

_,-t,- o ln(_ + 1) for ]_ = 1

t__2__"[{ 1
o

= +-' _-" - 1] for #
"I

J

(13)

where t 0 is the aging time prior to loading and at some time later during the

test the aging time is t 4- t ° where t is the test time. Use of the effective time

expressions in the laminated plate model allowed for the prediction of long term

creep compliance. Input to the model was the material parameters measured

from short term tests.
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Results

Lincerity

Coincidence of the compliance curves in figures 4 and 5 indicated that stress
caused less than 15% variation in compliance on the log scale. In addition,

figures 4 and 5 show no clear trend in location of the curves in relation to the

applied stress. Based upon these results and the fact that the same applied

stress level was used at all temperatures, it was assumed that proportionality

was met for all tests. From data such as that shown in figure 6, it was also

assumed that the linear superposition condition was met for all tests. It was

recognized that the assumption of linear viscoelastic behavior based upon
these results might not be conclusive, however it was felt that deviations from

linearity were small enough to confidently proceed with the linear model. The

final applied stress levels chosen for the creep tests were 2.66 MPa and 6.81

MPa for the transverse and shear tests respectively.

Momentary Compliance Master Curves

As mentioned, three to four replicate specimens were used to generate the

isothermal momentary master curves (MMC's) for $22 and $66. The MMC

parameters (SO,z, _), given in table 1, were found by fitting equation 1 to the

combined data sets from all replicates. Figures 7-15 show the resultant MMC's

with selected error bars included to indicate the spread in the data. The

magnitude of these errors were less than. 18 GPa with most measured errors

significantly smaller than this. In general, the $66 (shear} compliance data was

better behaved than the $22 (transverse} data.

It should be noted that even though only one set of MMC parameters are

given in table 1, each of the replicate tests had their own shift rate (it) found

through the procedures described previously. Therefore, the shift rate given in

table 1 is an average value. The number of replicate tests and the standard

deviation of tt are also provided in table 1. The average shift rates are plotted

versus test temperature in figures 16 and 17 for the shear and transverse

compliance respectively. The data points in these figures were connected with a
smooth curve to illustrate the trends.

r For comparison purposes, the resultant MMC's for each temperature are

plotted together in figures 18 and 19 for the transverse and shear compliance

respectively. The error bars of the previous figures were not included for clarity.

These curves represent the sum of all the short term sequenced creep

compliance data.
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Time-Temperature Superpositi0n Master Curves

The isothermal MMC's for each compliance direction could also be collapsed
by using time/temperature superposition (TTSP). Each set of isothermal MMC's
(figures 18 and 19) was collapsed to coincide with the 200oc curve to form the

TTSP master curves shown in figures 20 and 21. The TTSP shift rates were

found from a linear fit to time shift factor (log_r) versus temperature. The shift

rates associated with each TTSP master curve were .059 and .049 (Iog(sec.)/oc)

for the transverse and shear compliance respectively. TTSP shift rates along

with the aging time shift rates (_) can be used in expressions such as those

given in Brinson and Gates (2) to aid in data reduction and interpretation.

Methods Verification

Data from several long term (approximately 1200 hours) creep tests were

used to verify the predictive methodology. These data were compared to the
long term predictions made using the short term MMC data of table 1 and the

analytical methods outlined above. Figures 22-24 show data and predictions

for transverse and shear creep compliance at 215 and 225oc. Figure 23

includes predictions at 225 °, 227 ° and 230oc to illustrate the temperature

sensitivity of long term creep when testing close to Tg. The momentary curves
in these figures were predicted from the short term data without accounting for

aging effects. The long term predictions relied upon the effective time theory to
handle the aging effects. To test beyond 7 decades would require over 3 months

and to test beyond 8decades wouId require over 3 years. THe facilities for such

long term tests were not available in this study.

Lon_ Term Predictions

The parameters in table 1 and the analytical model were used to predict the

effects of aging on the isothermal, constant load compliance of quasi-isotropic

and [+45/90]s laminated IM7/K3B plates. The compliancevalues in the

predictions were normalized to the initial value to show the relative changes.
Predictions were made out to 8 decades oftime which is approximately 3.2

years.

Figure 25 shows predictions of Sg and Sxy for a quasi-isotropic laminate at
225oc. This figure illustrates the diTferences-in the individual compliance terms

as well as the aging time dependent behavior of a fiber dominated laminate.

To demonstrate the predicted dependence on test temperature, figure 26

shows the long term behavior of Sy at 200, 215 and 225oc. Figure 27 shows
the dependence of long term creep compliance on laminate layup. In this

figure, Sy was predicted for a quasi-isotropic and a [+45/90], laminate at
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215oc. The differences between a fiber versus matrix dominated layup are
clearly evident.

Summary and Discussion

ErrQr Analysis

Replicate tests on specimens cut from different panels revealed specimen to

specimen scatter in the data. This is clearly demonstrated by the error bars of
figures 7-15. However, as shown by Feldman and Gates(3}, repeat tests on the

same specimen generated only small deviations (less than 5%) in the results.

These results coupled with the strict adherence to test procedures and periodic

calibration of all test equipment leads to the belief that experimental errors

inherent in the data were minimized. The primary source of error in the data

was felt to be the panel-to-panel material inconsistencies. One additional factor

to note however, is that the material property tests and the long term

verification tests were run on different test stands. Consequently, slight

differences in specimen thermal profiles and temperature stability should be
considered a source of data error.

Material Master Curves

The material momentary master curves of figures 18 and 19 show the clear

temperature dependency of short term creep compliance. The ordering of the

curves was as expected with the highest temperatures resulting in the highest

creep compliance. The directional dependency of the PMC is also evident by

noting the differences in the compliance between the transverse and shear
tests.

Aging time shift rates found from the isothermal MMC's showed a clear

temperature dependency over the range investigated. As shown in figures 16

and 17, as test temperature approached Tg, the shift rate (_) decreased.
Additional data over a wider range of temperatures would be required to

establish global maximums and minimums. At Tg, the polymer is in
equilibrium and theoretically, a shift rate of zero would indicate a material

exhibiting no aging behavior. Although the shift rate was assumed constant

over time at a given temperature, results by Lee and McKenna(10) indicated

that a polymer may exhibit a change in shift rate as it ages into a equilibrium

state. However, to reach this condition would require a long aging time and/or

aging temperatures very close to Tg. Modeling of this time dependent change in
shift rate and the implications in regards to the effective time theory were

explored in Brinson and Gates(2).

Collapsing the MMC's to form the TTSP master curves was performed using

horizontal shifts only. For the ideal case, these curves should collapse
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completely. The scatter evident in figures 20 and 21 are due to the sources of
scatter in the MMC°s as explained above. Despite this scatter, the results
demonstrates that TTSP will work satisfactorily on short term data.

Predictive Model

The predictive model provided a means of analytically studying the effects of

physical aging on long term creep compliance. Figures 22-24 indicate that the

model does a good job of predicting the long term creep compliance from short

term data. All of these figures show the long term prediction to be lower than

the test data. Part of the differences between test and prediction may be due to
the material inconsistencies mentioned previously. Figure 23 illustrates that

the differences between test and prediction may also be due to slight variations

in test temperature. Comparing the momentary versus long term predictions in

figures 22-24 illustrates the large errors which would occur if predictions did
not include the effects of aging.

For the cases investigated to date, the coupling of linear viscoelasticity,

classical lamination theory and effective time theory has provided a good

predictive model for long term creep. Barfing the occurrence of creep rupture
or aging into equilibrium, it was not expected that creep compliance data

greater than 7 decades of time would deviate significantly from the trends

indicted in the data of figures 22-24. However, without actual data, the

complete verification of a prediction spanning years is not feasible.

Comparison of the analytical model to 1200 hour test data provided the

confidence to use the model for parametric studies such as shown in figures

25-27 for laminates under constant load and temperature. As indicated by

these figures, even a fiber dominated laminate may exhibit sensitivity of certain

material parameters to aging time and temperature.
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Compl.

Term

$22

366

Temp.(°C}

200

208

215

225

230

200

208

215

225

S o

( 1 / GPa]

.133

.130

.127

• 134

.118

.238

.236

.239

.227

(sec.)

156347.

123003.

76897.

17588.

2829.

55550.

28874.

9186.

2404•

.423

.366

.315

.297

•231

.383

.362

.382

.301

.864

.927

•999

.876

.482

1.051

1.070

1.017

.928

(std. dev.)

• 139

.016

.030

.092

.068

.030

.030

.056

.082

|

number of

replicates

3

3

3

3

4

3

3

4

4

Table 1. Momentary master curve parameters for both the transverse

and shear creep compliance.
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Figure 8: Transverse compliance MMC at 208°C.
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Figure 9: Transverse compliance MMC at 215°C.
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Figure 10: Transverse compliance MMC at 225°C.
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Figure 11: Transverse compliance MMC at 230°C.
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Figure 12: Shear compliance MMC at 200°C.
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Figure 13: Shear compliance MMC at 208°C.
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Figure 14: Shear compliance MMC at 215°C' -:
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Figure 15: Shear compliance MMC at 225°C.
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Figure 16: Shear compliance shift rate as a function of temperature.
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Figure 17: Transverse compliance shift rate as a function of temperature.
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Figure 18: Shear compliance momentary master curves.
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Figure 19: Transverse compliance momentary master curves
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Figure 20: Shear compliance TTSP master curve 200°C to 225°C.
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Figure 21: Transverse compliance TTSP master curve 230°C to 200°C.
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Figure 22: Long term test data versus prediction.
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Figure 23: Long term test data versus prediction.
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Figure 24: Long term test data versus prediction.
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Figure 25: Prediction of the effects of aging on long term compliance.

Directional dependency in a laminate is illustrated.
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Figure 26: Prediction of the effects of aging on long term compliance.

Temperature dependency in a laminate is illustrated.
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Figure 27: Prediction of the effects of aging on long term compliance.
Laminate layup dependency is illustrated.
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